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Abstract Background: Deep learning convolutional neural networks (CNNs) show great po-

tential for melanoma diagnosis. Melanoma thickness at diagnosis among others depends on

melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodular

melanomas). The question whether CNN may counterbalance physicians’ diagnostic diffi-

culties in these melanomas has not been addressed. We aimed to investigate the diagnostic per-

formance of a CNN with approval for the European market across different melanoma

localisations and subtypes.

Methods: The current market version of a CNN (Moleanalyzer-Pro�, FotoFinder Systems

GmbH, Bad Birnbach, Germany) was used for classifications (malignant/benign) in six dermo-

scopic image sets. Each set included 30 melanomas and 100 benign lesions of related
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localisations and morphology (set-SSM: superficial spreading melanomas and macular nevi;

set-LMM: lentigo maligna melanomas and facial solar lentigines/seborrhoeic keratoses/nevi;

set-NM: nodular melanomas and papillomatous/dermal/blue nevi; set-Mucosa: mucosal mel-

anomas and mucosal melanoses/macules/nevi; set-AMskin: acrolentiginous melanomas and ac-

ral (congenital) nevi; set-AMnail: subungual melanomas and subungual (congenital) nevi/

lentigines/ethnical type pigmentations).

Results: The CNN showed a high-level performance in set-SSM, set-NM and set-LMM (sen-

sitivities >93.3%, specificities >65%, receiver operating characteristics-area under the curve

[ROC-AUC] >0.926). In set-AMskin, the sensitivity was lower (83.3%) at a high specificity

(91.0%) and ROC-AUC (0.928). A limited performance was found in set-mucosa (sensitivity

93.3%, specificity 38.0%, ROC-AUC 0.754) and set-AMnail (sensitivity 53.3%, specificity

68.0%, ROC-AUC 0.621).

Conclusions: The CNN may help to partly counterbalance reduced human accuracies. How-

ever, physicians need to be aware of the CNN’s limited diagnostic performance in mucosal

and subungual lesions. Improvements may be expected from additional training images of

mucosal and subungual sites.

ª 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Malignant melanoma accounts for the highest mortality

rate among all skin cancers, and incidence rates are still
increasing in many countries around the world [1]. In

advanced disease stages, the prognosis is limited, mak-

ing early diagnosis vital [2]. The reasons for a delayed

melanoma diagnosis may be separated into patient-

related and physician-related factors [3]. While an

improvement of patient-related factors may be achieved

by public campaigns increasing melanoma awareness,

physician-related factors are mostly modelled by the
individual diagnostic expertise [4]. Compared with the

naked eye examination, dermoscopy may increase the

diagnostic accuracy of physicians [5e7], and a number

of validated algorithms have been designed to improve

early diagnosis [8e10]. However, while many dermo-

scopic features and algorithms target the diagnosis of

the most frequent melanoma subtypes, namely superfi-

cial spreading melanoma (SSM) and lentigo maligna
melanoma (LMM), the morphological traits of mela-

nomas of other specific anatomic sites (e.g. mucosa,

acral skin and nail unit) are rarely covered. In addition,

nodular melanomas may show a symmetrical growth

pattern with only one colour, thus evading detection

[11]. The aforementioned details may explain why dra-

matic improvements have been observed in the early

detection of SMM (nearly 50% decrease in median
thickness over two decades), while the thickness of

nodular or acral melanomas at diagnosis remained

largely unchanged [12,13].

The increasing application of artificial intelligence

and machine learning in areas of healthcare and medi-

cine has attracted a great deal of research interest in
recent decades [14]. Recently, deep learning convolu-

tional neural networks (CNNs) have entered the arena

of image-based melanoma diagnosis and proven a

dermatologist-level diagnostic performance [15,16].

Diagnostic support for physicians with regard to

difficult-to-diagnose melanomas of special localisations
and rare subtypes would be desirable. Yet, the diag-

nostic performance of a CNN across such a variety of

melanomas has not been evaluated.

We provide data by comparing the sensitivity, spec-

ificity, and receiver operating characteristics-area under

the curve (ROC-AUC) of a CNN approved as a medical

device in Europe across six image sets including mela-

nomas of different localizations and subtypes admixed
with benign lesions matched for localisation and

morphology.

2. Material and methods

The study was approved by the local ethics committee

and performed in accordance with the Declaration of

Helsinki principles. In this study, we used the current
version of a CNN that recently gained regulatory

approval as a medical device for the European market

(Moleanalyzer-Pro�; FotoFinder Systems GmbH, Bad

Birnbach, Germany). Details on the CNN’s architecture

and training procedures are given in the supplement

methods.

For the study, six dermoscopic image sets were

compiled (set-SSM, set-LMM, set-NM, set-Mucosa, set-
AMskin and set-AMnail), each containing 30 melanomas

(Table 1) and 100 benign lesions (Table 2) that were

matched for localisation and morphology. To this end,

J.K.W. and H.A.H. manually screened image libraries



Table 1
Characteristics of patients and melanomas within image sets.

Characteristics set-SSM

(Melanomas)

set-LMM

(Melanomas)

set-NM

(Melanomas)

set-Mucosa

(Melanomas)

set-AMskin

(Melanomas)

set-AMnail

(Melanomas)

Age (mean, � SD) 58.6 �14.8 67.2 �13.3 61.0 �15.9 63.0 �17.9 69.6 �13.7 49.2 �15.6

Sex (n, %)

Female 16 53.3% 11 36.7% 12 40% 21 70% 22 73.3% 14 46.7%

Male 14 46.6% 19 63.3% 18 60% 9 30% 8 26.7% 16 53.3%

Localisation (n, %) e e e e

Scalp/Face e e 30 100% 3 10% e e e e e e
Trunk/Extremities 30 100% e e 25 83.3% e e e e e e

Palmoplantar skin e e e e 2 6.7% e e 30 100% e e

Mucosa e e e e e e 30 100% e e e e
Nail unit e e e e e e e e e e 30 100%

Invasiveness

In situ (n, %) 5 16.7% 5 16.7% 0 0% 5 16.7% 5 16.7% 5 16.7%

Breslow thickness (mean, � SD) 0.7 0.3 0.7 0.8 4.0 2.8 4.1 3.3 1.5 1.7 1.2 1.8

SSM, superficial spreading melanoma; LMM, lentigo maligna melanoma (including lentigo maligna, i.e. in situ lesions); Mucosa, mucosal mela-

noma; NM, nodular melanoma, AMskin, acral melanoma of palmoplantar skin, AMnail, acral melanoma of the nail unit; SD, standard deviation.
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(Departments of Dermatology, Universities of Heidel-

berg, Munich and Lyon) and corresponding metadata

comprising more than 50.000 dermoscopic cases. Re-

quirements for matching by localisation and

morphology were as follows: set-SSM: superficial

spreading melanomas admixed with flat, macular,

benign melanocytic lesions of trunk and extremities

including junctional, compound, Reed and Spitz nevi;
set-LMM: lentigo maligna melanomas admixed with

flat, macular solar lentigines, seborrheic keratosis and

nevi located on face and scalp; set-NM: nodular mela-

nomas admixed with raised, nodular, papillomatous,

dermal and blue nevi; set-Mucosa: mucosal melanomas

admixed with flat, mucosal melanoses, melanotic mac-

ules and nevi; set-AMskin: acrolentiginous melanomas

admixed with acral nevi (including congenital acral
nevi); set-AMnail: subungual melanomas admixed with

subungual nevi (including congenital subungual nevi),

lentigines as well as ethnical type pigmentations. The

ground truth in all melanoma cases (n Z 180) was based

on the histopathological diagnosis, while the ground

truth in benign lesions (n Z 600) was either based on

histopathology (n Z 363, 60.5%), on an unremarkable

follow-up by sequential digital dermoscopy over at least
2 years (n Z 210, 35.0%) or on expert opinion (n Z 27,

4.5%). Various camera/dermoscope combinations were

used for image acquisition. No overlap between data

sets for training, validation and testing was allowed. All

images complied with quality standards for skin imaging

[17].

2.1. Statistical analysis

The primary outcome measures were the CNN’s sensi-

tivity, specificity and AUC of ROC for the diagnostic

classification of lesions in the six test-sets. The CNN put
out a ‘malignancy score’ ranging from 0 to 1, and an a

priori cut-off of >0.5 set by large validation data was

applied for the dichotomous classification of melanoma

versus benign lesions. Descriptive statistics as frequency,

mean, range and standard deviation were used. The

ROC AUCs of the six test-sets were compared pairwise

by controlling for multiple testing according to Tukey’s

method. All analyses were carried out using SPSS,
version 25 (IBM, SPSS, Chicago, IL).

3. Results

3.1. Characteristics of imaged lesions and patients

Dermoscopic images of melanomas (nZ 180) for the six

different sets were randomly selected from image li-
braries and categorised by localisation or subtypes

(Table 1). Resulting image sets (set-SSM, set-LMM, set-

NM, set-Musoca, set-AMskin, set-AMnail) each con-

tained 30 melanomas (25 invasive, 5 in situ). The mean

(�SD) age of melanoma patients (n Z 180) at diagnosis

was youngest in patients with AMnail (49.2, �15.6 years)

and oldest in patients with AMskin (69.6, �13.7 years).

Invasiveness (mean Breslow thickness, � SD) was most
advanced in NM (4.0, �2.8 mm) and MM (4.0,

�3.3 mm), while LMM (0.7, �0.8 mm) and SSM (0.7,

�0.3 mm) were least progressed (Table 1). The ground

truth in all melanoma cases was based on the histo-

pathological diagnosis.

For each image set, 100 benign lesions of comparable

localisation and morphology were included (e.g. set-

SSM comprised SSM admixed with benign, flat, macu-
lar, junctional or compound nevi of the trunk and ex-

tremities). Benign lesions were either diagnosed by

histopathology, by unremarkable follow-up examina-

tions over at least 2 years or by expert opinion (Table 2).



Table 2
Characteristics of patients and benign lesions within image sets.

Characteristics set-SSM

(benign

controls)

set-LMM

(benign

controls)

set-NM

(benign

controls)

set-Mucosa

(benign

controls)

set-AMskin

(benign

controls)

set-AMnail

(benign

controls)

Age (mean, � SD) 42.8 �11.0 54.6 �22.4 44.9 �14.4 40.7 �17.5 39.9 �19.4 29.4 �19.6

Sex (n, %)

Female 34 34% 44 44% 60 60% 67 67% 57 57% 52 52%

Male 66 66% 56 56% 40 40% 33 33% 43 43% 48 48%

Localisation (n, %) e e e e
Scalp/Face e e 100 100% e e e e e e e e

Trunk/Extremities 100 100% e e 100 100% e e e e e e

Palmoplantar skin e e e e e e e e 100 100% e e
Mucosa e e e e e e 100 100% e e e e

Nail unit e e e e e e e e e e 100 100%

Ground truth (n, %)

Histopathology 100 100% 87 87% 12 12% 83 83% 64 64% 17 17%

Follow-up e e e e 88 88% 17 17% 35 35% 70 70%

Expert opinion e e 13 13% e e e e 1 1% 13 13%

set-SSM, superficial spreading melanomas and macular nevi; set-LMM, lentigo maligna melanomas and facial solar lentigines/seborrheic keratoses/

nevi; set-NM, nodular melanomas and papillomatous/dermal/blue nevi; set-Mucosa, mucosal melanomas and mucosal melanoses/macules/nevi;

set-AMskin, acrolentiginous melanomas and acral (congenital) nevi; set-AMnail, subungual melanomas and subungual (congenital) nevi/lentigines/

ethnical type pigmentations.

Ground truth ‘Follow-up’: uneventful dermoscopic follow-up over at least 2 years.
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Representative images of all image sets are depicted in

Fig. 1.

3.2. Diagnostic performance of the CNN

Boxplots in Fig. 2 show the distribution of the CNN’s
‘probability of malignancy’ scores that resulted from the

softmax output layer and ranged from 0 to 1, with

higher scores indicating a higher probability of mela-

noma. The average (�SD) scores of the classifier for

melanomas within each set were 0.98 (�0.06) in set-

SSM, 0.98 (�0.06) in set-LMM, 0.90 (�0.23) in set-

NM, 0.94 (�0.19) in set-Mucosa, 0.80 (�0.36) in set-

AMskin, and 0.51 (�0.43) in set-AMnail (Fig. 2). Benign
lesions were matched to melanomas of each set for

localisation and morphology. Malignancy scores were

0.07 (�0.23) for macular nevi in set-SSM, 0.37 (�0.43)

for facial solar lentigines, seborrhoeic keratoses and nevi

in set-LMM, 0.04 (�0.18) for nodular, papillomatous,

dermal, blue and combined nevi in set-NM, 0.59 (�0.44)

for mucosal melanoses, lentigines and nevi in set-

Mucosa, 0.10 (�0.26) for acral nevi (including congen-
ital acral nevi) in set-AMskin and 0.33 (�0.40) for sub-

ungual nevi (including congenital subungual nevi) and

ethnical type pigmentations in set-AMnail. Higher stan-

dard deviations reflect an increased range of scattered

malignancy scores and were observed in subungual

melanomas of set-AMnail and in benign lesions of set-

LMM, set-Mucosa and set-AMnail. Yet, for all mela-

noma localisations and subtypes, malignancy scores
were significantly higher when compared with benign

lesions (ManneWhitney U test, p < 0.05).

When operating the CNN at the a priori cut-off of

>0.5 for making the diagnosis of melanoma, the
calculated sensitivities (95% confidence interval [CI])

and specificities (95% CI) were (i) 100% (88.7%e100%)

and 94% (87.5%e97.2%) in set-SSM; (ii) 100% (88.7%e
100%) and 65.0% (55.3%e73.6%) in set-LMM; (iii)

93.3% (78.7%e98.2%) and 96.0% (90.2%e98.4%) in set-

NM; 83.3% (66.4%e92.7%) and 91% (83.8%e95.2%) in
set-AMskin; (iv) 53.3% (36.1%e69.8%) and 68.0%

(58.3%e76.3%) in set-AMnail and 93.3% (78.7%e98.2%)

and 38.0% (29.1%e47.8%) in set-Mucosa.

The resulting diagnostic accuracy (proportion of true

positive and true negative in all evaluated cases) was

highest in set-SSM (95.4%) and set-NM (95.4%), fol-

lowed by set-AMskin (89.2%), set-LMM (73.1%), set-

AMnail (64.4%) and lowest in set-Mucosa (50.8%).
For a direct head-to-head comparison of the CNN’s

diagnostic performance across the image-sets, we

plotted the corresponding ROC curves into one graph

(Fig. 3). ROC-AUC [95% CI] in descending order was

0.989 [0.976e1.000] in set-SMM, 0.982 [0.964e1.000] in

set-NM, 0.928 [0.867e0.990] in AMskin-MM, 0.926

[0.881e0.970] in set-LMM, 0.754 [0.668e0.841] in set-

Mucosa and 0.621 [0.506e0.735] in set-AMnail. In a
pairwise comparison of the CNN’s AUCs as attained in

the six image sets, we were able to identify two clusters

(cluster A: set-SSM, set-LMM, set-NM, set-AMskin;

cluster B: set-Mucosa, set-AMnail) of test-sets showing

non-significant AUC differences within each cluster

(Table 3).

3.3. Subgroup analysis of CNN’s performance in invasive

melanomas only

The differentiation of benign lesions from invasive

melanomas may be considered less challenging than



Fig. 1. The CNN’s melanoma probability score (‘score’) of representative pairs of melanoma images from set-SSM (a1, a2), set-Mucosa

(b1, b2), set-NM (c1, c2), set-AMskin (d1, d2) and set-AMnail (e1, e2) and set-LMM (f1, f2) with true-positive (left) versus false-negative

(right) classifications are depicted. In set-SSM (a1, a2) and set-LMM (f1, f2) both images represent correctly classified lesions, as no false-

negative cases were observed in the study. Breslow thickness is indicated in millimetre (mm). Mis: Melanoma in situ. ROC, receiver

operating characteristics; AUC, area under the curve; CNN, convolutional neural network; set-SSM, superficial spreading melanomas and

macular nevi; set-LMM, lentigo maligna melanomas and facial solar lentigines/seborrheic keratoses/nevi; set-NM, nodular melanomas

and papillomatous/dermal/blue nevi; set-Mucosa, mucosal melanomas and mucosal melanoses/macules/nevi; set-AMskin, acrolentiginous

melanomas and acral (congenital) nevi; set-AM nail, subungual melanomas and subungual (congenital) nevi/lentigines/ethnical type

pigmentations.
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their differentiation from in situ melanomas. To rule out

potential bias by situ melanomas included in the image
sets (none included in set-NM), we additionally calcu-

lated the sensitivities, specificities, diagnostic accuracy,

and ROC data after excluding in situ melanomas. In this

setting, diagnostic accuracy was found almost un-

changed in comparison to the original image sets. Best

results were attained in set-SSM (95.2%), followed by

set-NM (94.5%), set-AMskin (89.6%), set-LMM (72%),

set-AMnail (66.4%), and lowest in set-Mucosa (48.8%).
Similarly, the CNN’s ROC-AUC (95% CI) for the six

image sets of invasive melanomas and benign lesions

was largely unchanged at 0.990 (0.979e1) in set-SSM,

0.982 (0.964e1) in set-NM, 0.944 (0.906e0.982) in set-

LMM, 0.926 (0.854e0.998) in set-AMskin, 0.737

(0.643e0.831) in set-MM and 0.668 (0.552e0.784) in

set-AMnail.

4. Discussion

Recent improvements in the early detection of mela-

noma vary with melanoma histotypes [13]. While time

trends in melanoma thickness revealed a strong decrease

in thickness for SSM and LMM, a constant high

thickness was observed for NM and melanomas of

palmoplantar skin and the nail unit [18]. Similarly,

mucosal melanomas are more often diagnosed at
advanced stages with a significantly worse prognosis

[19]. Reports of deep learning CNN’s with an expert-

level performance in the diagnosis of skin cancer

[15,16] have fuelled expectations that physician-related
delays due to false-negative diagnoses may be avoided

in the near future. In the present study, we used the
current versions of a deep learning CNN approved as a

medical device for the European market and systemat-

ically assessed its diagnostic performance in image sets

of melanomas admixed with benign lesions from

different localisations and subtypes.

As expected by us, the tested CNN showed a high-

class diagnostic performance in set-SSM, which

included the melanoma histotype with the highest
prevalence and, therefore, the highest availability of

validated training images. LMM represents the second

most frequent melanoma histotype making up 5e15% of

melanoma cases in population-based studies [20]. Be-

sides the availability of sufficient amounts of validated

LMM training images, LMM shows many overlapping

morphological traits to SMM, so that a high level of

‘transfer learning’ during training of both histotypes
may be assumed [21]. These reasons may contribute to

the CNN’s favourable diagnostic performance in set-

LMM.

Surprisingly, diagnostic performance was also high-

class in set-NM, accounting for approximately 5% of all

melanomas [20]. Of note, our set of NM included

amelanotic and hypomelanotic cases mostly recognis-

able (from a human perspective) by the presence of
atypical vascular patterns.

TheCNN’s sensitivity formelanomas of acral skinwas

lower (84%) than in the aforementioned three image sets

(sensitivities between 93.3% and 100%). However, the

high specificity of 91% contributed to a reasonably high



Fig. 2. Boxplots present the distribution of the CNN’s malignancy scores (range 0e1) for the image sets (set-SSM, set-LMM, set-NM, set-

Mucosa, set-AMskin, set-AMnail) showing malignant and benign lesions separately. Scores closer to 1 indicated a higher probability of

malignancy. The upper and lower bounds of boxes indicate the 25th and 75th percentiles while the median is indicated by the thick line

intersecting the upper and lower box. Whiskers indicate the full range of probability scores. Statistical analyses revealed significantly

different malignancy scores in melanomas versus benign controls in all image sets (p < 0.05). The dotted line indicates the CNN’s a priori

threshold for classifying a lesion as being malignant (malignancy score >0.5). CNN, convolutional neural network; set-SSM, superficial

spreading melanomas and macular nevi; set-LMM, lentigo maligna melanomas and facial solar lentigines/seborrheic keratoses/nevi; set-

NM, nodular melanomas and papillomatous/dermal/blue nevi; set-Mucosa, mucosal melanomas and mucosal melanoses/macules/nevi;

set-AMskin, acrolentiginous melanomas and acral (congenital) nevi; set-AM nail, subungual melanomas and subungual (congenital) nevi/

lentigines/ethnical type pigmentations.
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accuracy of 89.6% and ROC-AUC of 0.928. As a result,
the CNN’s accuracy and ROC-AUC in set-AMskin

ranked third place directly after set-SSM (first place) and

set-NM (second place). The measured diagnostic accu-

racy of theCNN inAMskinwas slightly higher than results

attained by a previous report (accuracy ranging from

80.2% to 83.5%) [22]. However, it needs to be acknowl-

edged that results may not be directly compared across

different image sets and neural networks.
Of note, the CNN’s AUCs of set-SSM, set-LMM,

set-NM and set-AMskin showed non-significant differ-

ences in a pairwise statistical comparison (forming

cluster A). In contrast to the aforementioned results, we

found a limited diagnostic performance of the CNN in

set-Mucosa and set-AMnail (forming cluster B).

Mucosal melanomas are rare and make up only 1.3%

of melanoma case [19]. Besides their low frequency,
mucosal melanomas are mostly localised in the oral

cavity, genital area or perianal area, which often dis-

courages dermoscopic imaging because of technical

difficulties. As a result, images of mucosal melanomas

are among the least frequent melanoma histotypes

found in validated training images.
Melanomas of the nail unit are also rare [20]. Der-
moscopic patterns of subungual lesion are unique and

markedly distinct from skin lesions of any other local-

isation (e.g. parallel band of pigmentation in longitudi-

nal melanonychia striata). This morphological

difference is caused by the underlying anatomy of the

nail unit, and conceivably, ‘transfer learning’ by the

CNN will not help to compensate the lack of validated

training images, thus leading to a limited performance.
To exclude a relevant impact of in situ melanomas,

each melanoma set included a fixed number of five in-

situ lesions, which were excluded for an additional

subgroup analysis comparing only invasive melanomas

to benign lesions. These analyses showed comparable

results with regard to diagnostic accuracies and ROC-

AUCs to those attained in the original overall image

sets.
Our study reveals some limitations. First, dermo-

scopic images of test-sets were randomly selected from

local image libraries of different institutions, which does

not guarantee a representative sample as found in

population-based studies. Second, the quality of images

in this study was high. In a clinical routine setting, a

lower quality of images, non-compliant with imaging



Fig. 3. Head-to-head comparison of ROC curves across the different test-sets. The CNN’s ROC AUC for each individual test-set is

indicated. ROC, receiver operating characteristics; AUC, area under the curve; CNN, convolutional neural network; set-SSM, superficial

spreading melanomas and macular nevi; set-LMM, lentigo maligna melanomas and facial solar lentigines/seborrheic keratoses/nevi; set-

NM, nodular melanomas and papillomatous/dermal/blue nevi; set-Mucosa, mucosal melanomas and mucosal melanoses/macules/nevi;

set-AMskin, acrolentiginous melanomas and acral (congenital) nevi; set-AM nail, subungual melanomas and subungual (congenital) nevi/

lentigines/ethnical type pigmentations.

Table 3
Statististical comparison of the CNN’s AUCs in image sets.

Pair-wise difference of AUCs

Clusters Test-sets SSM LMM NM AMskin Mucosa AMnail

A SSM e 0.7893 1.0000 0.7930 <.0001a <.0001a

A LMM 0.7893 e 0.8545 1.0000 0.0061a <.0001a

A NM 1.0000 0.8545 e 0.8576 <.0001a <.0001a

A AMskin 0.7930 1.0000 0.8576 e 0.0060a <.0001a

B Mucosa <.0001a 0.0061a <.0001a 0.0060a e 0.0690

B AMnail <.0001a <.0001a <.0001a <.0001a 0.0690 e

AUC, area under the curve; SSM, superficial spreading melanoma; LMM, lentigo maligna melanoma (including lentigo maligna, i.e. in situ lesions);

Mucosa, mucosal melanoma; NM, nodular melanoma; AMskin, acral melanoma of palmoplantar skin; AMnail, acral melanoma of the nail unit; SD,

standard deviation.

The AUC’s of the different image sets have been compared pairwise by controlling for multiple testing according to Tukey’s method. There is not

enough evidence to distinguish the CNN’s AUCs of set-SSM, set-LMM, set-NM and set-AMskin among each other, but the diagnostic performance

of the CNN in these sets (cluster A) is significantly better than for set-Mucosa and set-AMnail (cluster B).
a The CNN’s AUCs showed a significant difference by pairwise comparison (p < 0.05).
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standards [17], may be used for analysis by a CNN. This

may potentially result in a reduced diagnostic perfor-

mance. Third, most images were derived from fair

skinned patients, so that no conclusion on lesions of

individuals of other ethnic backgrounds may be drawn.

Finally, the data of our study are of retrospective na-

ture. We strongly agree that there is a high need for

performing prospective studies to investigate the po-
tential benefits of CNNs when applied in clinical

routine.

5. Conclusions

In conclusion, the tested CNN revealed a high-class

diagnostic performance in set-SSM, set-NM, set-

AMskin and set-LMM (all ROC-AUC >0.9). These re-

sults make it reasonable to assume that the CNN may
help to counterbalance low human accuracies inherent

to nodular melanomas and melanomas of acral skin. In

contrast, we would currently like to discourage the

CNN’s application in mucosal and subungual lesions.

The expected expansion of dermoscopic image archives

and new software approaches warrant further

improvements.
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